159 research outputs found

    Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source

    Full text link
    As typically implemented, single photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand.Comment: 4 pages, LaTex, 2 figures, twocolumn and RevTex Style for PR

    Distributed Relay Protocol for Probabilistic Information-Theoretic Security in a Randomly-Compromised Network

    Full text link
    We introduce a simple, practical approach with probabilistic information-theoretic security to mitigate one of quantum key distribution's major limitations: the short maximum transmission distance (~200 km) possible with present day technology. Our scheme uses classical secret sharing techniques to allow secure transmission over long distances through a network containing randomly-distributed compromised nodes. The protocol provides arbitrarily high confidence in the security of the protocol, with modest scaling of resource costs with improvement of the security parameter. Although some types of failure are undetectable, users can take preemptive measures to make the probability of such failures arbitrarily small.Comment: 12 pages, 2 figures; added proof of verification sub-protocol, minor correction

    Quantum copying: Fundamental inequalities

    Get PDF
    How well one can copy an arbitrary qubit? To answer this question we consider two arbitrary vectors in a two-dimensional state space and an abstract copying transformation which will copy these two vectors. If the vectors are orthogonal, then perfect copies can be made. If they are not, then errors will be introduced. The size of the error depends on the inner product of the two original vectors. We derive a lower bound for the amount of noise induced by quantum copying. We examine both copying transformations which produce one copy and transformations which produce many, and show that the quality of each copy decreases as the number of copies increases.Comment: 5 pages + 1 figure, LaTeX with revtex, epsfig submitted to Phys. Rev.

    Protocols for entanglement transformations of bipartite pure states

    Get PDF
    We present a general theoretical framework for both deterministic and probabilistic entanglement transformations of bipartite pure states achieved via local operations and classical communication. This framework unifies and greatly simplifies previous works. A necessary condition for ``pure contraction'' transformations is given. Finally, constructive protocols to achieve both probabilistic and deterministic entanglement transformations are presented.Comment: 7 pages, no figures. Version slightly modified on Physical Review A reques

    Quantum identification system

    Full text link
    A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus it can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.Comment: RevTeX, 4 postscript figures, 9 pages, submitted to Physical Review

    Security of quantum cryptography using balanced homodyne detection

    Full text link
    In this paper we investigate the security of a quantum cryptographic scheme which utilizes balanced homodyne detection and weak coherent pulse (WCP). The performance of the system is mainly characterized by the intensity of the WCP and postselected threshold. Two of the simplest intercept/resend eavesdropping attacks are analyzed. The secure key gain for a given loss is also discussed in terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure

    Quantum cryptography via parametric downconversion

    Full text link
    The use of quantum bits (qubits) in cryptography holds the promise of secure cryptographic quantum key distribution schemes. It is based usually on single-photon polarization states. Unfortunately, the implemented ``qubits'' in the usual weak pulse experiments are not true two-level systems, and quantum key distribution based on these imperfect qubits is totally insecure in the presence of high (realistic) loss rate. In this work, we investigate another potential implementation: qubits generated using a process of parametric downconversion. We find that, to first (two-photon) and second (four-photon) order in the parametric downconversion small parameter, this implementation of quantum key distribution is equivalent to the theoretical version. Once realistic measurements are taken into account, quantum key distribution based on parametric downconversion suffers also from sensitivity to extremely high (nonrealistic) losses. By choosing the small parameter of the process according to the loss rates, both implementations of quantum key distribution can in principle become secure against the attack studied in this paper. However, adjusting the small parameter to the required levels seems to be impractical in the weak pulse process. On the other hand, this can easily be done in the parametric downconversion process, making it a much more promising implementation.Comment: 6 pages, Latex (a special style file is attached). Presented in QCM'98 conference. Similar results regarding the insecurity of weak-pulse schemes were also presented by Norbert Lutkenhaus in the same conferenc

    A Lorentz-invariant look at quantum clock synchronization protocols based on distributed entanglement

    Full text link
    Recent work has raised the possibility that quantum information theory techniques can be used to synchronize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization (QCS) requires distribution of entangled pure singlets to the synchronizing parties. Such remote entanglement distribution normally creates a relative phase error in the distributed singlet state which then needs to be purified asynchronously. We present a fully relativistic analysis of the QCS protocol which shows that asynchronous entanglement purification is not possible, and, therefore, that the proposed QCS scheme remains incomplete. We discuss possible directions of research in quantum information theory which may lead to a complete, working QCS protocol.Comment: 5 pages; typeset in RevTe

    Engineering Entanglement between two cavity modes

    Full text link
    We present scheme for generation of entanglement between different modes of radiation field inside high-Q superconducting cavities. Our scheme is based on the interaction of a three-level atom with the cavity field for pre-calculated interaction times with each mode. This work enables us to generate complete set of Bell basis states and GHZ state
    • …
    corecore